Radiochemistry (Hari Lab.)


  • Prof. Dr. Yoshiyuki Hari
  • Dr. Yuta Ito
  • Dr. Takashi Osawa


Research project

The research in our group is in the area of organic and bioorganic chemistry, and currently focuses on the development of nucleic acid analogs capable of targeting single-stranded RNA or double-stranded DNA in a sequence-specific fashion. To achieve the objective, synthetic organic chemistry and analytical chemistry are conducted.

(Keywords: Nucleic acid chemistry, Organic synthesis, Bioorganic chemistry, Medicinal chemistry)


Selected recent publications

Original articles

  1. T. Osawa, Y. Hari*, M. Dohi, Y. Matsuda, S. Obika*, Synthesis and properties of the 5-methyluridine derivative of 3,4-dihydro-2H-pyran-bridged nucleic acid (DpNA), J. Org. Chem. 2015, 80, 10474-10481.
  2. Y. Hari*, S. Kashima, Y. Matsuda, A. Sakata, R. Takamine, S. Ijitsu, S. Obika*, Base pair recognition ability of 2-(methylamino)pyrimidin-4-yl nucleobase in parallel triplex DNA, Heterocycles 2015, 90, 432-441.
  3. M. Akabane-Nakata, S. Obika*, Y. Hari*, Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA, Org. Biomol. Chem. 2014, 12, 9011-9015.
  4. Y. Hari*, S. Ijitsu, M. Akabane-Nakata, T. Yoshida, S. Obika*, Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA, Bioorg. Med. Chem. Lett. 2014, 24, 3046-3049.
  5. Y. Hari*, M. Akabane, S. Obika*, 2′,4′-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in parallel-motif DNA triplex, Chem. Commun. 2013, 49, 7421-7423.
  6. Y. Hari*, T. Morikawa, T. Osawa, S. Obika*, Synthesis and properties of 2′-O,4′-C-ethyleneoxy bridged 5-methyluridine, Org. Lett. 2013, 15, 3702-3705.
  7. Y. Hari*, M. Nakahara, S. Obika*, Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer, Bioorg. Med. Chem. 2013, 21, 5583-5588.

Review articles / Books

  1. Y. Hari*, S. Obika*, Synthesis and properties of 2′,4′-bridged nucleic acids containing multiple heteroatoms in the bridges, J. Synth. Org. Chem., Jpn. 2016, 74, 141-153 (in Japanese).
  2. Y. Hari*, Development of artificial nucleic acid that recognizes a CG base pair in triplex DNA formation, Yakugaku Zasshi 2013, 133, 1201-1208 (in Japanese).
  3. Y. Hari*, S. Obika, T. Imanishi*, Towards the sequence-selective recognition of double-stranded DNA containing pyrimidine-purine interruptions by triplex-forming oligonucleotides, Eur. J. Org. Chem. 2012, 2875-2887.

Molecular and Cellular Physiology (Fukada Lab)

Prof. Dr. Toshiyuki Fukada


Research project

Work in my research group has demonstrated that zinc transporter-mediated zinc signals are indispensible for normal cellular functions, and impairment of zinc signaling causes diseases. “Zinc signaling” is an emerging research field and a novel platform in life sciences, so that I would like to explore the zinc signaling at molecular level, in particular about roles and mechanisms of zinc signaling involved in path-physiological conditions of epithelium, neurological diseases, and cancer. Development of regulators for zinc signaling is also one of my research goals.


Recent publications

Original article

1.Kamimura, D., K. Katsunuma, Y. Arima, T. Atsumi, J.J Jiang, H. Bando, J. Meng, L. Sabharwal, A. Stpfkova, N. Nishikawa, H. Suzuki, H. Ogura, N. Ueda, M. Harada, J. Kobayashi, T. Hasegawa, H. Yoshida, H. Koseki, I. Miura, S. Harada, K. Nishida, H. Kitamura, T. Fukada, T. Hirano, and M. Murakami. mKDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR.

Nature Communications 6, Article number: 7474, 2015

2.Jenkitkasemwong, S., C-Y Wang, R. Coffey, W. Zhang, A. Chan, T. Biel, J-S. Kim, S. Hojyo, T. Fukada, and M. Knutson. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis.

Cell Metabolism 22: 138–150, 2015

3.Hojyo, S., T. Miyai, H. Fujishiro, M. Kawamura, T. Yasuda, A. Hijikata, BH. Bin, T. Irié, J. Tanaka, T. Atsumi, M. Murakami, M. Nakayama, O. Ohara, S. Himeno, H. Yoshida, H. Koseki, T. Ikawa, K. Mishima, and ※T. Fukada. Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B cell receptor signal strength.

PNAS. 111:11786-91, 2014 (corresponding author)

4.Bin BH., S. Hojyo, T. Hosaka, J. Bhin, H. Kano, T. Miyai, M. Ikeda, T. Kimura-Someya Mikako Shirouzu, EG Cho, K. Fukue, T. Kambe, W. Ohashi, KH Kim, J. Seo, DH. Choi, YJ Nam, D. Hwang, A. Fukunaka, Y. Fujitani, S. Yokoyama, A. Superti-Furga, S. Ikegawa, TR Lee, and ※T. Fukada. Molecular pathogenic basis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins.

EMBO Molecular Medicine 6: 1028-1042, 2014 (corresponding author)

5.Miyai, T., S. Hojyo, T. Ikawa, M. Kawamura, T. Irié, H. Ogura, A. Hijikata, BH. Bin, T. Yasuda, H. Kitamura, M. Nakayama, O. Ohara, H.o Yoshida, H. Koseki, K. Mishima, and ※T. Fukada. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development.

PNAS. 111:11780-85, 2014 (corresponding author)


Review article

  1. Hojyo S, Miyai T, ※Fukada T.

B-cell receptor strength and zinc signaling: Unraveling the role of zinc transporter ZIP10 in humoral immunity.

Receptor and Clinical Investigation 2: e387; 2015 (corresponding author)

2.Bin, BH., S. Hojyo, and ※Fukada T.

Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13.

Rare Diseases 2: e974982; 2014 (corresponding author)



1.Fukada, T

Genetic study of zinc transporters and zinc signaling, edited by Collins J

Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, ELSEVIER (in press) (corresponding author)

2.Fukada, T, Hojyo, S., and Bin, B.H.

Zinc signal in growth control and bone diseases, edited by Fukada T, and T. Kambe

Zinc Signals in Cellular Functions and Disorders, Springer, 249-267, 2014 (corresponding author).

Pharmaceutical Chemistry (Yoshida Lab.)


  • Prof. Dr. Masahiro Yoshida
  • Dr. Kenji Matsumoto
  • Dr. Tsukasa Hirokane

Research project

Our research is focused on the chemical synthesis of biologically active molecules and the development of new chemical reactions. We have already achieved for the synthesis of various structurally complex natural products utilizing our novel synthetic methods. In the course of our study about the development of new reactions, we established several novel reactions using transition metal catalyst, which enables to lead the eco-friendly new chemical process.

  1. Transition metal-catalyzed organic reactions
  2. Novel methodology for the synthesis of complex heterocyclic molecules
  3. Efficient synthesis of biologically active molecules


Original articles

  1. Matsumoto, M. Yoshida, M. Shindo
    Heterogeneous Rhodium-Catalyzed Aerobic Oxidative Dehydrogenative Cross-Coupling: Nonsymmetrical Biaryl Amines.
    Angewandte Chemie International Edition, 55, DOI: 10.1002/anie.201600400.
  2. Namba,* K. Takeuchi, Y. Kaihara, M. Oda, A. Nakayama, A. Nakayama, M. Yoshida, K. Tanino*
    Total synthesis of palau’amine
    Nature Communications, 6, 8731 (2015).
  3. Matsumoto, M. Suyama, S. Fujita, T. Moriwaki, Y. Sato, Y. Aso, S. Muroshita, H. Matsuo, K. Monda, K. Okuda, M. Abe, H. Fukunaga, A. Kano, M. Shindo,
    Efficient Total Synthesis of Bongkrekic Acid and Apoptosis Inhibitory Activity of its Analogues
    Chemistry A European Journal 21, 11590-11602 (2015).
  4. Yoshida,* T. Mizuguchi, K. Namba
    One-pot synthesis of tri- and tetrasubstituted pyridines by sequential ring-opening-cyclization-oxidation reaction of N-arylmethyl 3-aziridinylpropiolate esters,
    Angewandte Chemie International Edition, 53, 14550–14554 (2014).
  5. Matsumoto, K. Dougomori, S. Tachikawa, T. Ishii, M. Shindo,
    Aerobic Oxidative Homocoupling of Aryl Amines Using Heterogeneous Rhodium Catalysts
    Organic Letter 16, 4754-4757 (2014).
  6. Yoshida,* T. Nakagawa, K. Kinoshita, K. Shishido,
    Regiocontrolled construction of furo[3,2-c]pyran-4-one derivatives by palladium-catalyzed cyclization of propargylic carbonates with 4-hydroxy-2-pyrones.
    The Journal of Organic Chemistry, 78, 1687–1692 (2013).
  7. Yoshida,* S. Ohno, K. Namba,
    Synthesis of substituted tetrahydrocyclobuta[b]benzofurans by palladium-catalyzed domino substitution-[2+2] cycloaddition of propargylic carbonates with 2-vinylphenols,
    Angewandte Chemie International Edition, 52, 13597–13600 (2013).
  8. Yoshida,* S. Ohno, K. Shishido,
    Synthesis of tetrasubstituted furans by palladium-catalyzed decarboxylative [3+2] cyclization of propargyl b-keto esters.
    Chemistry – A European Journal, 18, 1604–1607 (2012).
  9. Yoshida,* T. Mizuguchi, K. Shishido,
    Synthesis of oxazolidinones by efficient fixation of atmospheric CO2 with propargylic amines using silver/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) dual catalyst system.
    Chemistry – A European Journal, 18, 15578–15581 (2012).


Review articles / Books

  1. Yoshida,
    Synthesis of functionalized cyclic molecules by palladium-catalyzed cyclization of propargylic esters with bis-nucleophiles.
    Heterocycles, 87, 1835–1864 (2013).
  2. Yoshida,
    Development of palladium-catalyzed transformations using propargylic compounds.
    Chem. Pharm. Bull., 60, 285–299 (2012).