2AII-7

Pd触媒反応を活用したセコプレジザン型セスキテルペン ジアジフェニンの合成研究

(徳島文理大薬)

○今井顕子・有井健視・原田研一・久保美和・日置英彰・福山愛保

Neurotrophic compounds isolated from Illicium species

R. Yokoyama, J.-M. Huang, C.-S. Yang, Y. Fukuyama, *J. Nat. Prod.*, *65*, 527-531 (2002).
M. Kubo, C. Okada, J.-M. Huang, K. Harada, H. Hioki, Y. Fukuyama, *Org. Lett.*, *11*, 5190-5193 (2009).
J.-M. Huang, R. Yokoyama, C.-S. Yang, Y. Fukuyama, *J. Nat. Prod.*, *64*, 428-431 (2001).
J.-M. Huang, R. Yokoyama, C.-S. Yang, Y. Fukuyama, *Tetrahedron Lett.*, *41*, 6111-6114 (2000).
Y. Fukuyama, Y. Hata, M. Kodama, *Planta Medica*, *63*, 2199-2201 (1997).
Y. Fukuyama, N. Shida, M. Kodama, *Planta Medica*, *59*, 181-182 (1993).

Total synthesis of (±)-jiadifenin by Danishefsky's group

Y. S. Cho, D. A. Carcache, Y. Tian, Y.-M. Li, S. J. Danishefsky, *J. Am. Chem. Soc.*, *126*, 14358-14359 (2004). D. A. Carcache, Y. S. Cho, Z. Hua, Y. Tian, Y.-M. Li, S. J. Danishefsky, *J. Am. Chem. Soc.*, *128*, 1016-1022 (2006)

Retrosynthetic analysis for jiadifenin

Preparation of 1,1-dibromo-1-alkene

Effect of solvent on Mizoroki-Heck reaction

entry	Pd(OAc) ₂	(<i>o-</i> tol)₃P	base	solvent	c (mol/L)	time (h)	yield
1	10 mol%	20 mol%	Et ₃ N	toluene	0.02	8	17%
2	10 mol%	20 mol%	Et ₃ N	CH ₃ CN	0.02	8	14%
3	10 mol%	20 mol%	Et ₃ N	dioxane	0.02	8	18%
4	10 mol%	20 mol%	Et ₃ N	DMF	0.02	8	39%
5	10 mol%	20 mol%	Et ₃ N	MeOH	0.02	1	99%
6	10 mol%	20 mol%	Et ₃ N	MeOH	0.1	1	98%
7	5 mol%	10 mol%	Et ₃ N	MeOH	0.02	1	99%
8	5 mol%	10 mol%	Et ₃ N	EtOH	0.02	1	88%
9	5 mol%	10 mol%	Et ₃ N	t-BuOH	0.02	2	99%

Preparation of allyl carbonate (No.1)

1: 1 diastereomeric mixture

Effect of solvent on Pd-catalyzed cyclization of carbonate

Mechanism of O-alkylation in aprotic solvent

Mechanism of C-alkylation in protic solvent

Difference between 21a and stereoisomer 21b in Pd-catalyzed reaction

Mechanism of successive Tsuji-Trost reaction and lactonization

Mechanism of construction of seven-membered ring from 21b

Effect of ligand on Pd-catalyzed cyclization of carbonate

entry	catalyst	ligand	solvent	temp.	23	24	26
1	Pd(OAc) ₂	<i>n</i> -Bu₃P	EtOH	reflux	-	M. P.	-
2	Pd(OAc) ₂	<i>t</i> -Bu₃P	EtOH	reflux	-	M. P.	-
3	Pd(OAc) ₂	Cy ₃ P	EtOH	reflux	-	M. P.	-
4	Pd(OAc) ₂	DPPB	EtOH	reflux	22%	28%	-
5	Pd(OAc) ₂	DPPF	EtOH	reflux	-	40%	-
6	Pd(OAc) ₂	(<i>R</i>)-BINAP	EtOH	reflux	27%	-	23%

M.P.= main product

Effects of solvent and base on Pd-catalyzed cyclization of carbonate

t-BuOH

t-BuOH

4

5

(R)-BINAP

(±)-BINAP

LiOAc (2.4 eq)

LiOAc (2.4 eq)

^aNo reaction was observed at lower temperature (eg. 65 °C)

30 °C

30 °C

-

-

9%

9%

trace

9%

57%

55%

Conclusion

The role of protic solvent

Difference between polar solvent and non-polar solvent

In non-polar solvent

In polar solvent

Using Pd ₂ dba ₃ as a catalyst for cyclization of carbonate								
				s ~		rs		
\sim	CO ₂ Et	Pd(PPh ₃) ₄		\checkmark	\checkmark^{0}	\sim	CO ₂ Et	
		80 °C				∃t \	, Ò	
11	L ≻=o	· · · ·	L _Ó	Τ		/	∽он	
	21b		23		24	2	8	
entry	y catalyst	ligand	solvent	temp.	23	24	28	
1	Pd_2dba_3	<i>n</i> -Bu₃P	EtOH	80 °C	-	-	-	
2	Pd_2dba_3	<i>t</i> -Bu₃P	EtOH	80 °C	-	-	-	
3	Pd_2dba_3	Cy ₃ P	EtOH	80 °C	-	30%	-	
4	Pd_2dba_3	(S,S)-Trost ligand	EtOH	80 °C	-	-	-	
5	Pd_2dba_3	(<i>R</i>)-BINAP	EtOH	80 °C	-	-	-	

Difference between Pd_2dba_3 and $Pd(OAc)_2$ as precatalyst

 $Pd_{2}dba_{3} + nPPh_{3} \implies Pd(PPh_{3})n \implies Pd(PPh_{3})_{2} + {}_{n-2}PPh_{3}$ neutral Pd species $Pd(OAc)_{2} + nPPh_{3} \implies [Pd(PPh_{3})_{3}(OAc)]^{-} \implies [Pd(PPh_{3})_{2}(OAc)]^{-} + PPh_{3}$ active anionic Pd species

Boltzmann Distribution (%)* A:B = 99:1A: dihedral angle = 10-170° B: dihedral angle = 190-350°

Boltzmann Distribution (%)* C:D = 76:24C: dihedral angle = 190-350° D: dihedral angle = 10-170°

*The ratio was calculated with spartane '08

The role of LiOAc* in tandem cyclization

- 1. Formation of lithium enolate
- 2. Promoting the epimerization at C6

Relative stereochemistry of compound 22

crystal data

crystal: monoclinic, space group: P2(1) dimensions: a = 8.0156(14) Å b = 8.0900(15) Å, c = 42.519(8) Å V = 2757.2(9) Å, Z = 4, final *R*: 0.0704

Neurite outgrowth promoting activity of jiadifenin in primary cultured rat cortical neurons

control

0.1 μΜ

1.0 μM

10 µM